Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Xiao-Chun Huang, ${ }^{\text {a }}$ Ming-Hua Zeng ${ }^{\text {b }}$ and Seik Weng $\mathrm{Ng}^{\mathrm{c} *}$

${ }^{\text {a }}$ Department of Chemistry, Shantou University, Shantou 515063, People's Republic of China,
${ }^{\mathbf{b}}$ School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603, Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.142$
Data-to-parameter ratio $=15.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(4-Pyridyl)-1H-benzimidazole trihydrate

The benzimidazole and pyridyl portions of the molecule of the title compound, $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ are essentially co-planar; the three N atoms interact with the water molecules, forming a three-dimensional hydrogen-bonded network structure.

Comment

2-Phenyl- 1 H -benzimidazole is a heterocyclic ligand that can bind to metal atoms through the deprotonated and tertiary N atoms (Huang et al., 2003, 2004); since the N atoms are on opposite sides of the five-membered imidazole ring, the ligand can function as a spacer in the formation of chain-type coordination polymers. A third Lewis basic site in the 2aromatic substituent should ensure that the present ligand (Fig. 1) will bind to three metal atoms simultaneously.

$\cdot 3 \mathrm{H}_{2} \mathrm{O}$
(I)

The benzimidazole and pyridyl portions of the title molecule, (I), are coplanar [dihedral angle $=2.8(1)^{\circ}$] The N atoms of the benzimidazole portion of the molecule interact with water molecules to form a linear chain (Fig. 2), as does the pyridyl N atom (Table 2), forming a hydrogen-bonded threedimensional network structure.

Experimental

Isonicotinic acid ($1.25 \mathrm{~g}, 10.0 \mathrm{mmol}$) and 1,2-diaminobenzene (1.08 g , 10.0 mmol) were added to polyphosphoric acid (14 g). The mixture was heated under nitrogen at 433 K for 8 h . The resulting viscous syrup was poured into 500 ml water. The tan solid that separated was collected and then suspended in 500 ml 0.5 M sodium carbonate. The solid was broken up to give a yellow powder. Recrystallization of the powder from methanol/water yielded the pure compound as very

Figure 1

An ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. The dashed lines indicate hydrogen bonds.

Received 6 April 2004 Accepted 27 April 2004 Online 8 May 2004

Figure 2
An ORTEPII (Johnson, 1976) plot of the chain propagating along the a axis in (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii. Adjacent chains are linked by hydrogen bonds (shown as dashed lines) into a threedimensional network.
faint yellow crystals $(1.30 \mathrm{~g}, 67 \%$ yield). Elemental analysis calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$: C 57.82, H 6.07, $\mathrm{N} 16.86 \%$; found C $57.93, \mathrm{H}$ 5.89, N 16.91%. IR (KBr, cm^{-1}): 3420 (br), 3052 (br), 1601 (m), 1463 (m), 1443 (vs), 1403 (vs), 1316 (vs), 1280 (vs), 1150 (m), 1122 (s), 991 (m), 974 (m).

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=249.27$
Monoclinic, $P 2_{1} / c$
$a=7.3913(6) \AA$
$b=9.3377(8) \AA$
$c=18.643(2) \AA$
$\beta=94.209(2)^{\circ}$
$V=1283.3(2) \AA^{3}$
$Z=4$
$D_{x}=1.290 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1887
\quad reflections
$\theta=2.4-23.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Block, colorless
$0.20 \times 0.16 \times 0.13 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: none 10725 measured reflections 2925 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.142$
$S=1.01$
2925 reflections
191 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 1$	$1.316(2)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.363(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.388(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.385(3)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.354(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.367(3)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.376(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.387(2)$
$\mathrm{N} 3-\mathrm{C} 11$	$1.323(2)$	$\mathrm{C} 8-\mathrm{C} 12$	$1.376(2)$
$\mathrm{N} 3-\mathrm{C} 10$	$1.324(2)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.382(2)$
$\mathrm{C} 1-\mathrm{C} 8$	$1.470(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.374(3)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.393(2)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.377(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.396(2)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2$	$105.0(1)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$116.6(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 7$	$107.2(1)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 6$	$132.8(2)$
$\mathrm{C} 10-\mathrm{N} 3-\mathrm{C} 11$	$116.0(2)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 2$	$105.3(1)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	$112.8(1)$	$\mathrm{C} 2-\mathrm{C} 7-\mathrm{C} 6$	$121.9(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 8$	$123.8(1)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 12$	$116.9(2)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 8$	$123.5(1)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 9$	$122.0(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$	$109.7(1)$	$\mathrm{C} 1-\mathrm{C} 8-\mathrm{C} 12$	$121.1(1)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$130.2(2)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$119.1(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 7$	$120.1(2)$	$\mathrm{N} 3-\mathrm{C} 10-\mathrm{C} 9$	$124.4(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.7(2)$	$\mathrm{N} 3-\mathrm{C} 11-\mathrm{C} 12$	$124.0(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$121.5(2)$	$\mathrm{C} 8-\mathrm{C} 12-\mathrm{C} 11$	$119.6(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.2(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-HO11 \cdots N1	0.86 (1)	1.91 (1)	2.764 (2)	175 (2)
$\mathrm{O} 1-\mathrm{HO} 12 \cdots \mathrm{O} 2^{\text {i }}$	0.86 (1)	2.07 (2)	2.868 (2)	155 (3)
$\mathrm{O} 2-\mathrm{HO} 21 \cdots \mathrm{O} 1^{\text {ii }}$	0.85 (1)	1.94 (1)	2.782 (2)	167 (2)
$\mathrm{O} 2-\mathrm{HO} 22 \cdots \mathrm{O} 3^{\text {iii }}$	0.86 (1)	1.87 (1)	2.719 (2)	170 (2)
$\mathrm{O} 3-\mathrm{HO} 31 \cdots \mathrm{~N} 3$	0.85 (1)	2.01 (1)	2.841 (2)	167 (2)
$\mathrm{O} 3-\mathrm{HO} 32 \cdots \mathrm{O} 1^{\text {iv }}$	0.86 (1)	2.01 (1)	2.862 (2)	174 (2)
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 2$	0.86 (1)	2.05 (1)	2.892 (2)	169 (2)

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $x, y-1, z$; (iii) $2-x, y-\frac{1}{2}, \frac{1}{2}-z$; (iv) $x, \frac{3}{2}-y, z-\frac{1}{2}$.

The aromatic H atoms were placed at calculated positions in the riding-model approximation $\left[\mathrm{C}-\mathrm{H}=0.93 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=$ $\left.1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water and amino H atoms were located and refined with a distance restraint $[\mathrm{O}-\mathrm{H}=\mathrm{N}-\mathrm{H}=0.85$ (1) \AA].

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Shantou University, Sun Yat-Sen University and the University of Malaya for their generous support of this work.

References

Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Huang, X.-C., Zhang, J.-P. \& Chen, X.-M. (2003). Chin. Sci. Bull. 48, 15311534.

Huang, X.-C., Zhang, J.-P., Lin, Y.-Y., Yu, X.-L. \& Chen, X.-M. (2004). Chem. Commun. In the press.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

